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Abstract

In awake animals, the cerebral cortex displays an ‘‘activated’’ state, with distinct characteristics compared to other states like slow-wave
sleep or anesthesia. These characteristics include a sustained depolarized membrane potential (Vm) and irregular firing activity. In the pres-
ent paper, we evaluate our understanding of cortical activated states from a computational neuroscience point of view. We start by review-
ing the electrophysiological characteristics of activated cortical states based on recordings and analysis performed in awake cat association
cortex. These analyses show that cortical activity is characterized by an apparent Poisson-distributed stochastic dynamics, both at the sin-
gle-cell and population levels, and that single cells display a high-conductance state dominated by inhibition. We next overview compu-
tational models of the ‘‘awake’’ cortex, and perform the same analyses as in the experiments. Many properties identified experimentally are
indeed reproduced by models, such as depolarized Vm, irregular firing with apparent Poisson statistics, and the determinant role of inhib-
itory fluctuations on spiking. However, other features are not well reproduced, such as firing statistics and the conductance state of the
membrane, suggesting that the network state displayed by models is not entirely correct. We also show how networks can approach a
correct conductance state, suggesting ways by which future models will generate activity fully consistent with experimental data.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Several experimental preparations show the propensity
of cerebral cortex to generate spontaneous activity without
any specific stimulus. For example, a high level of ongoing
activity was reported in visual cortex in vivo, and remark-
ably, it was of the same order of magnitude as visually-
evoked responses (Arieli et al., 1996). Isolating the cortical
tissue in vivo by creating cortical ‘‘slabs’’ first lead to a
silent network, but activity recurs after a few days (Burns
and Webb, 1979; Timofeev et al., 2000). In vitro cortical
networks can also display self-sustained activity, as found
in cortical slices (Sanchez-Vives and McCormick, 2000;
Cossart et al., 2003) or in organotypic cultures of cortical
neurons (Plenz and Aertsen, 1996).

Models of cortical networks have attempted to generate
activity comparable to experiments, and several types of
models were proposed, ranging from integrate and fire net-
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works (Amit and Brunel, 1997; Brunel, 2000) up to conduc-
tance-based network models (Compte et al., 2000;
Timofeev et al., 2000; Vogels and Abbott, 2005; Kumar
et al., in press). In particular, a recent study (Vogels and
Abbott, 2005) provided relatively small networks
(’10,000 neurons) displaying self-sustained activity, which
were used to investigate the effect of ‘‘internal dynamics’’
on signal propagation.

In the present paper, we evaluate our understanding of
cortical activated states from a computational neuroscience
point of view. We start by reviewing the electrophysiolog-
ical characteristics of activated cortical states based on
recordings and analyses performed in awake cat associa-
tion cortex. We next turn to models and evaluate to which
extent these models can reproduce all experimental
measurements.
2. Experimental characterization of activated cortical states

The term ‘‘activated’’ state refers to cortical activity in
states of vigilance corresponding to the awake animal.
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The electroencephalogram (EEG) during such activated
states is typically ‘‘desynchronized’’, i.e., of low amplitude
and irregular activity dominated by fast frequencies (15–
60 Hz; see Fig. 1, Awake, EEG). Intracellularly, neurons
are depolarized and fire tonic and irregular discharges
(Fig. 1, Awake, Intra). This level of irregularity is also
apparent in multiunit activity (Fig. 1, Awake, Units). Dur-
ing slow-wave sleep (SWS), the activity consists in up- and
down-states which are in register with EEG slow waves
(Fig. 1, SWS). Locally, the up-states are associated with
desynchronized EEG, and thus can be considered as net-
work states very close to activated states. Indeed, network
activity is very similar during up-states compared to wake-
fulness (Fig. 1, SWS, Units). This similarity extends to var-
ious measurements, such as the patterns of discharges,
patterns of correlation and relations between EEG and unit
activity (Destexhe et al., 1999, 2007).

Note that, in contrast to the ‘‘global’’ up-states observed
in vivo, ‘‘local’’ up-states have also been observed in vitro
(Cossart et al., 2003). In this case, only a subset of the neu-
rons enter simultaneously into firing activity. These local
up-states have been connected to attractor dynamics and
give additional constraints on dwell time and on activity
levels. They last for several hundred milliseconds and
include about 0.5–2% of the population. Such local up-
states will not be considered here.

Activated states were characterized experimentally both
from extracellular and intracellular recordings in order to
provide constraints for models. The first type of character-
ization are the statistics of firing rates, which were evalu-
ated from intracellular recordings to insure that only
Awake

EEG

Intra
-60mV
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Fig. 1. Cortical activity during activated states and up/down-states during slow
(left) and slow-wave sleep (right; modified from Steriade et al. (2001)). Botto
electrodes (modified from Destexhe et al. (1999)). During SWS, the down-state
association cortex (area 5–7).
single neurons are considered (Fig. 2A). During wakeful-
ness, there is a large diversity of spontaneous firing rates
in different cells with inhibitory cells having larger rates
of discharge (around 30 Hz on average) compared to excit-
atory cells (around 10 Hz on average). Another character-
istic of the single-cell discharge is its irregularity. The
interspike interval (ISI) distributions computed from single
cells are exponentially distributed beyond a minimal refrac-
tory value (Fig. 2B), which is a characteristic property of
Poisson stochastic processes (with a refractory period in
this case).

In order to check for collective behavior, we have calcu-
lated the ‘‘clustering’’ of spikes simultaneously recorded at
different sites, and in particular if the collective dynamics
can be associated to neuronal ‘‘avalanches’’, as found
in vitro (Beggs and Plenz, 2003). To perform such an anal-
ysis, the avalanches are detected as clusters of temporally
contiguous spikes separated by silences, and the sign of
self-organized critical state is a power-law behavior of the
distribution of avalanche sizes (see Beggs and Plenz,
2003, and references therein). Such an avalanche analysis
was performed from multielectrode recordings in awake
cats (Bedard et al., 2006), and did not reveal the typical
power-law scaling behavior of critical states, but rather
exponential distributions (Fig. 2C). Such distributions are
identical to those obtained using Poisson stochastic pro-
cesses, compatible with the apparent Poisson statistics of
single-cell firing patterns. Thus, it is unlikely that the net-
work dynamics evolves according to a critical state; if the
system would be near a phase transition, the dynamics
would follow power-law behavior.
1s

SWS

2 s

-wave sleep. Top traces: EEG and intracellular activity during wakefulness
m traces: raster plots of multiunit spiking activity at eight extracellular

s are indicated by vertical gray bars. All recordings were obtained from cat
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Fig. 2. Analysis of cortical activity during activated states. (A) Statistics of firing rates during wakefulness in cats. The left panel shows the relationship
between the average Vm and the firing rate of different excitatory and inhibitory cells during wakefulness. The middle panel shows the distribution of firing
rates obtained for presumed excitatory neurons, while that of inhibitory neurons is shown in the right panel. (B) Interspike interval (ISI) distributions
computed from extracellularly recorded neurons in wakefulness (natural logarithms). (C) Avalanche analysis of extracellular recordings in the awake cat
(natural logarithms). (D) Conductance measurements in awake cat. The distribution of relative excitatory (top) and inhibitory conductances (bottom)
measured from intracellular recordings (conductances are shown relative to the leak conductance). Modified from Bedard et al. (2006) (B and C) and
Rudolph et al. (2007) (A and D).
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Another characterization is to measure the total synap-
tic conductance due to synaptic background activity. Such
measurements were done from intracellular recordings in
awake cats (Rudolph et al., 2007). These measurements
also revealed a large diversity in different cells. Plotting
the relative conductance (absolute conductance divided
by the leak conductance) revealed that excitation is on
average close to unity, while inhibition is larger, around
1.5 on average (Fig. 2D).

These features were confirmed recently by relating those
conductance measurements to a spike-triggered average
(STA) conductance analysis (Pospischil et al., 2007;
Rudolph et al., 2007; Piwkowska et al., in press). It was
found that the main synaptic conductance pattern associ-
ated to spikes in cortical neurons was a decrease of total
conductance, which was due to a decrease of inhibitory
conductance (Fig. 3). This analysis therefore shows that
in awake or naturally sleeping cats, most spikes are evoked
by fluctuations of inhibitory conductances. More specifi-
cally, it was shown recently that it is the ratio of variances
between inhibitory and excitatory conductances that deter-
mines the exact conductance pattern associated to spikes
(see details in Piwkowska et al., in press).

3. Single-cell model of activated states

The first type of model was directly linked to experimen-
tal data and was aimed at evaluating the plausibility of
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Fig. 3. Spike-triggered average conductance analysis from intracellular
recordings in awake cats. (A) STA analysis during wakefulness. The time
course of the excitatory and inhibitory conductances, as well as total
membrane conductance, is shown in a 50 ms window prior to spikes. For
most cells analyzed, the total membrane conductance dropped before the
spike, which was associated with a drop of inhibitory conductance. (B)
STA analysis during the up-states of slow-wave sleep. The general
conductance patterns was similar as in the waking state. Modified from
Rudolph et al. (2007).
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conductance measurements. The conductance measure-
ments during wakefulness (Fig. 2D) were integrated into
a single-compartment model with Hodgkin–Huxley kinet-
ics (Rudolph et al., 2007). The type of model considered
500

A

20mV

-60mV

Fig. 4. Hodgkin–Huxley model of cortical activity during activated states an
measurements in the wake state (based on conductance values shown in Fig.
sleep (based on the values given in Rudolph et al., 2007). Right panels: Vm

experiments (gray) in the same conditions (DC injection of �0.5 and �0.43
calculated only from up-states. Modified from Rudolph et al. (2007).
was the point-conductance model (Destexhe et al., 2001),
which consists in a single-compartment neuron subject to
fluctuating conductances:

C
dV
dt
¼ �GLðV � ELÞ � geðV � EeÞ � giðV � EiÞ þ SðtÞ;

ð1Þ
where C denotes the membrane capacitance, GL the leak
conductance and EL the leak reversal potential. S(t) repre-
sents the spiking mechanism, which was here given by the
Hodgkin–Huxley (HH) model (see Section 4.2). ge(t) and
gi(t) are stochastic excitatory and inhibitory conductances,
with respective reversal potentials Ee and Ei. These synap-
tic conductances were described by the following Ornstein-
Uhlenbeck model (Destexhe et al., 2001):

dge

dt
¼ � 1

se

½ge � ge0� þ

ffiffiffiffiffiffiffi
2r2

e

se

s
neðtÞ ð2Þ

dgi

dt
¼ � 1

si

½gi � gi0� þ

ffiffiffiffiffiffiffi
2r2

i

si

s
niðtÞ; ð3Þ

where ge0 and r2
e are, respectively, the mean value and var-

iance of the excitatory conductance, se is the excitatory
time constant, and ne(t) is a Gaussian white noise source
with zero mean and unit standard deviation. The inhibitory
conductance gi(t) is described by an equivalent equation
(Eq. (3)) with parameters gi0, r2

i , si and noise source ni(t).
The ‘‘Vm distribution’’ (VmD) method used for conduc-

tance analysis is directly derived from this model, and
enables the extraction of the parameters ge0, r2

e , gi0 and
r2

i from experimental data (see details in Rudolph et al.,
2004). The values obtained by VmD analysis of intracellu-
lar recordings in awake cats (Fig. 2D; Rudolph et al., 2007)
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were integrated in this model. This simulation (Fig. 4,
Awake), allows us to verify that these conductance mea-
surements led the model to generate Vm activity in excellent
agreement with the intracellular recordings (see details in
Rudolph et al., 2007). Similarly, integrating conductance
measurements during up-states (not shown) generated Vm

activity consistent with the up–down-state transitions seen
experimentally (Fig. 4, SWS). These results show that the
conductance estimates are consistent with the Vm activity
recorded experimentally during activated states.
4. Network models of activated states

We now turn to network models that autonomously
generate active states. We consider here a model derived
from the Vogels and Abbott (2005) study of self-sustained
irregular activity states in networks of spiking neurons with
conductance-based synapses. The model consisted of 4000
neurons, which were separated into two populations of
excitatory and inhibitory neurons, forming 80% and 20%
of the neurons, respectively. All neurons were connected
randomly using a connection probability of 2%.

The membrane equation of cell i was given by:

Cm

dV i

dt
¼ �gLðV i � ELÞ þ SiðtÞ þ GiðtÞ; ð4Þ

where Cm = 1 lF/cm2 is the specific capacitance, Vi is the
membrane potential, gL = 5 · 10�5 S/cm2 is the leak con-
ductance density and EL = �60 mV is the leak reversal po-
tential. Together with a cell area of 20,000 lm2, these
parameters give a resting membrane time constant of
20 ms and an input resistance at rest of 100 MX. The func-
tion Si(t) represents the spiking mechanism intrinsic to cell i

and Gi(t) stands for the total synaptic current of cell i (see
Section 4.3). Note that in this model, excitatory and inhib-
itory neurons have the same properties.
4.1. Integrate and fire (IF) models

In addition to passive membrane properties, IF neurons
had a firing threshold of �50 mV. Once the Vm reaches
threshold, a spike is emitted and the membrane potential
is reset to �60 mV and remains at that value for a refrac-
tory period of 5 ms. This model was inspired from a previ-
ous publication reporting self-sustained irregular states
(Vogels and Abbott, 2005).
4.2. Hodgkin–Huxley models

We also considered a Vogels-Abbott type network but
using spike generating mechanisms described by the Hodg-
kin and Huxley (HH) (1952) model. HH neurons were
modified from Traub and Miles (1991) and were described
by the following equations:
SðtÞ ¼ ��gNam3hðV � ENaÞ � �gKdn4ðV � EKÞ
dm
dt
¼ amðV Þð1� mÞ � bmðV Þm

dh
dt
¼ ahðV Þð1� hÞ � bhðV Þh

dn
dt
¼ anðV Þð1� nÞ � bnðV Þn;

ð5Þ

where �gNa ¼ 100 mS=cm2 and �gKd ¼ 30 mS=cm2 are the
maximal conductances of the sodium current and delayed
rectifier with reversal potentials of ENa = 50 mV and
EK = �90 mV. m, h, and n are the activation variables
whose time evolution depends on the (voltage-dependent)
rate constants am, bm, ah, bh, an and bn. The voltage-
dependent expressions for the rate constants were modi-
fied from the model described by Traub and Miles
(1991):

am ¼ 0:32ð13� V þ V TÞ=½expðð13� V þ V TÞ=4Þ � 1�
bm ¼ 0:28ðV � V T � 40Þ=½expððV � V T � 40Þ=5Þ � 1�
ah ¼ 0:128 expðð17� V þ V T þ V SÞ=18Þ
bh ¼ 4=½1þ expðð40� V þ V T þ V SÞ=5Þ�
an ¼ 0:032ð15� V þ V TÞ=½expðð15� V þ V TÞ=5Þ � 1�
bn ¼ 0:5 expðð10� V þ V TÞ=40Þ;

where VT = �63 mV adjusts the threshold (which was
around �50 mV for the above parameters). The inactiva-
tion was shifted by VS = 10 mV toward hyperpolarized
values to match the voltage dependence of Na+ currents
in neocortical pyramidal cells (see Destexhe and Paré,
1999).

This version of the HH model is very convenient because
it was matched to cortical pyramidal neurons (Destexhe
and Paré, 1999), and its threshold can be easily adjusted
using parameter VT. Using VT = �63 mV gives IF and
HH models with approximately the same voltage
threshold.

4.3. Synaptic interactions

Synaptic interactions were conductance-based, accord-
ing to the following membrane equation for neuron i:

GiðtÞ ¼ �
X

j

gjiðtÞðV i � EjÞ; ð6Þ

where Vi is the membrane potential of neuron i, gji(t) is the
synaptic conductance of the synapse connecting neuron j to
neuron i, and Ej is the reversal potential of that synapse. Ej

was 0 mV for excitatory synapses, or �80 mV for inhibi-
tory synapses.

Synaptic interactions were implemented as follows:
when a spike occurred in neuron j, the synaptic conduc-
tance gji was instantaneously incremented by a quantum
value (qe = 6 nS and qi = 67 nS for excitatory and inhibi-
tory synapses, respectively) and decayed exponentially with
a time constant of se = 5 ms and si = 10 ms for excitation
and inhibition, respectively.
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4.4. Behavior of the models

These two types of models simulate a self-sustained
irregular state of activity, in which all cells fire irregularly
and are characterized by important subthreshold voltage
fluctuations (Fig. 5A). The similarity of activity in both
IF and HH models shows that the spiking mechanism is
not critical, and suggests that the irregular activity is due
to the sparse connectivity in this model, as well as the bal-
ance between excitation and inhibition. Another character-
istic of this model is that the firing activity is similar in
excitatory and inhibitory cells (Fig. 5B). This feature is
due to the fact that in this model, excitatory and inhibitory
neurons have the same parameters and afferent
connectivity.

5. Comparison of models to experimental data

We analyzed the model similarly to experimental data
(see Section 2). First, we computed the spontaneous firing
rates which were around 15 Hz on average (Fig. 6A). This
value is similar to the experimental data. However, there
was no significant difference between excitatory and inhib-
itory cells in this model because both cell types had similar
parameters and connectivity. Second, we analyzed the sta-
tistics of interspike intervals (ISI), which are exponentially
distributed (Fig. 6B), exactly as in the data (Fig. 2B).
Third, we performed a similar avalanche analysis as per-
formed for the experimental data (Bedard et al., 2006). This
analysis also failed to evidence power-law scaling behavior
but rather indicates exponential distributions (Fig. 6C),
consistent with the Poisson type dynamics evidenced
above. This avalanche analysis was performed by choosing
eight cells in the network which had statistics identical to
the data (Fig. 6C), but was also valid for eight randomly
chosen cells (Fig. 7, left) or for larger sets of cells (Fig. 7,
right). These data show that the apparent Poisson statistics
and absence of avalanche dynamics observed in cat associ-
ation cortex (Bedard et al., 2006) is also found in network
models.

We also estimated the total synaptic conductance in all
cells of the network, and displayed the values relative to
the leak (Fig. 6D). These patterns of conductance revealed
a major difference between the model and the experiments:
both mean excitatory and inhibitory conductances are sig-
nificantly stronger in the model compared to the experi-
ments. The difference was particularly strong for the total
inhibitory conductance, which was about 10-fold larger
in the model compared to the estimates in real cells.

As for the data, we realized an STA conductance
analysis from the model. Qualitatively, the pattern of
conductance was the same in the model compared to
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the data (Fig. 6E): spikes were correlated to a prior
decrease of total membrane conductance, which was
associated with a decrease of inhibitory conductance.
However, the magnitude and time course of these
changes were different to the ones seen in the data (com-
pare with Fig. 3A). Nevertheless, the model shares with
real neurons the fact that most spikes are caused by a
decrease of inhibition.
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To check if conductance states closer to experiments can
be obtained, we explored the parameter space (qe, qi) of the
model. It has been shown (Kumar et al., in press) that syn-
chrony can have a destructive effect on stability and lower
conductance states are more likely to suffer from this phe-
nomena. Therefore, we increased network size while freez-
ing other properties, such as the number of synapses per
neuron, to reduce correlations and synchrony. Thus, we
considered networks up to sizes of N = 16,000, using a
fixed synaptic strength ratio (g = qi/qe = 10.333), and a
fixed number of synapses per neuron (k = 40). For each
simulation, we searched for the lowest value of quantal
conductances (qe, qi) for which stable self-sustained irregu-
lar activity can be observed, and measured the total excit-
atory and inhibitory conductances for each network
state. The results of this exploration are shown in Fig. 8:
the mean total excitatory and inhibitory conductances, as
well as their standard deviations, decreased linearly with
the quantal conductances. There was a boundary beyond
which only the quiescent state is stable. This boundary
seems to saturate to a finite value around N = 16,000 neu-
rons. For this network configuration, smaller mean con-
ductance values were obtained, but they were still larger
compared to experimental data (see below). We also
explored the network stability for different values of g,
and the lowest value giving stable irregular network states,
g = 2.88, was also reached for network sizes larger than
N = 16,000. We also tried to modify the resting membrane
potential, but no effect was noticeable on the mean conduc-
tances once the network settled into an active state (not
shown).

The network configuration displaying states of irregular
activity most in line with conductance measurements is
shown in Fig. 9. This network of 16,000 neurons displays
irregular states of activity (Fig. 9A) with mean conductance
distributions in reasonable agreement with experimental
data (Fig. 9B; compare with Fig. 6D): excitatory conduc-
tances were slightly lower than experimental measure-
ments, while inhibitory conductance were about twice
larger. This correspondence is much closer than the large
differences evidenced above for networks of 4000 neurons.
The lower conductance comes from two factors: the net-
work has a lower overall firing rate compared to the
N = 4,000 network (10.4 Hz vs. 18.7 Hz), and the quantal
conductances are also lower (qe = 1.8 nS and qi = 18 nS,
compared to qe = 6 nS and qi = 67 nS in the N = 4,000 net-
work). However, the activity of the network consisted of
irregular bursts of spikes (see Fig. 9A), rather than tonic
irregular firing as observed experimentally. The ISI distri-
bution in such a case is affected and shows a more promi-
nent peak for small ISIs (not shown). More exploration is
necessary to find active states consistent with experiments,
possibly using different network configurations. Ideally
such an exploration should be performed in conjunction
with mean-field approaches (work in progress).

6. Discussion

In this paper, we have provided a summary of analyses
of activated states in cerebral cortex, both at the single-cell
and network level (Section 2). We gave an overview of sin-
gle-cell models of such states (Section 3) and a network
model of self-sustained active cortical states (Section 4).
In Section 5, we provided comparisons between these mod-
els and experimental data.

This analysis showed that many features of activated
cortical states are well reproduced by models. These
include the irregular firing activity as seen experimentally
through raster plots and in the model. The range of firing
of the neurons was within the experimental measurements,
except that the significantly higher firing rate of inhibitory
neurons (Fig. 2A) is not reproduced by the model
(Fig. 6A), because excitatory and inhibitory cells have the
same parameters and connectivity in this model. In reality,
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excitatory and inhibitory cells have a significantly different
connectivity, and the inhibitory neurons are also more
excitable. These properties may explain the high mean fir-
ing rate of interneurons, and should be incorporated in
future models.

A remarkable property of the network model is that it
reproduces very well the apparent Poisson statistics of spik-
ing of individual neurons, as shown by the near exponential
shape of ISI distributions (Fig. 6B). This Poisson statistics
occurs despite the fact that this network model is com-
pletely deterministic (no external source of noise was used).
The dynamics observed is similar to cortical neurons, not
only for ISI distributions, but also at the level of collective
dynamics: the network model did not display avalanche
type of dynamics but exponentially-distributed avalanche
sizes (Fig. 6C), similar to that predicted by a stochastic pro-
cess. This result is in agreement with observations from
neuronal dynamics in cat association cortex (Fig. 2C;
Bedard et al., 2006). This provides evidence that the exper-
imental observations of Poisson dynamics (exponential ISI
distributions) and absence of avalanche dynamics, are all
consistent with self-generated irregular states in cortical
networks. Our interpretation is that these dynamics stem
from deterministic chaos of very high dimension, which
explains the apparent Poisson statistics, and that there is
no need to invoke self-organized critical states to explain
such dynamics.

A notable disagreement between data and models is the
conductance state of the membrane. Model cells have
about 10 times as much conductance as real cells (compare
Fig. 6D with Fig. 2D). This difference is probably due to
the small scale of the network, and the large synaptic con-
ductances that were necessary to sustain irregular firing
dynamics in such a network (Vogels and Abbott, 2005).
It is interesting to note that the neurons have 10-fold too
high conductances, which may explain the difficulty of
observing propagating activity in this model. Quantal con-
ductances had to be increased by a factor of 10–15 to sus-
tain propagation (Vogels and Abbott, 2005). It will be
interesting to re-evaluate such propagating properties in
networks displaying the right conductance state.

Interestingly, despite the fact that the conductance state
is incorrect in the model, we found that the STA of conduc-
tances in the model (Fig. 6E) qualitatively reproduces the
patterns seen in the data (Fig. 3). This indicates that in
both cases, most spikes are related to a prior decrease of
inhibition (Rudolph et al., 2007) and that inhibitory fluctu-
ations are therefore a determinant factor to evoke spikes in
such states. It is surprising that despite the huge difference
at the level of conductances, models and data converge on
this point, indicating that the network state is not so dis-
similar in the two cases.

We also explored the parameter space for networks of
different sizes to obtain conductance states more in line
with experimental measurements. We found that scaling
down the quantal synaptic conductances also lead to self-
sustained irregular activity states, but these states were pos-
sible only in sufficiently large networks. For too small sizes,
the activity becomes too correlated and cannot be self-sus-
tained. This rule, however, breaks down for a minimal
value of the quantal conductance, beyond which no self-
sustained activity state was possible even for very large
sizes. Consistent with previous studies (Kumar et al., in
press), we found networks displaying conductance states
close to experimental observations, but such networks also
displayed more ‘‘bursty’’ type of activity inconsistent with
experimental observations. Thus, at present, our analysis
did not lead to a unique network configuration consistent
with all experimental measurements.

No such systematic analysis has been done on other
computational models yet. For example, one recent model
(Kumar et al., in press) reported self-generated active
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cortical states, but in much larger network sizes (>100,000
neurons) than those reported in the Vogels and Abbott
(2005) model (>4,000 neurons). In the Kumar et al. (in
press) model, the connectivity is much closer to real values
in number of synapses and quantal conductances. Mea-
surements of the conductance state in a smaller-scale ver-
sion of this network (with external noisy inputs) indicates
values much more in line with the data, but the other anal-
yses as done here have not been done on such networks, so
it is difficult to tell which model is presently closest to
reality.

We conclude that many features identified experimen-
tally are present in models, and some of these features
are non-trivial, such as the spiking dynamics and STA of
conductances. However, there are strong disagreements,
mostly about the level of inhibitory firing rates and the
conductance state of the neurons. Such disagreements call
for building better models fully consistent with experimen-
tal data. In turn, models can point to interesting variables
to be measured experimentally. This was the case for exam-
ple for avalanche dynamics, which was first studied theo-
retically before being investigated in experiments. It is
only through such bidirectional interactions between exper-
imental and computational approaches that we will be able
to understand the genesis of activated cortical states and
their computational roles.
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