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Abstract The relationship between the dynamics of
neural networks and their patterns of connectivity is
far from clear, despite its importance for understanding
functional properties. Here, we have studied sparsely-
connected networks of conductance-based integrate-
and-fire (IF) neurons with balanced excitatory and
inhibitory connections and with finite axonal propaga-
tion speed. We focused on the genesis of states with
highly irregular spiking activity and synchronous firing
patterns at low rates, called slow Synchronous Irregular
(SI) states. In such balanced networks, we examined
the “macroscopic” properties of the spiking activity,
such as ensemble correlations and mean firing rates,
for different intracortical connectivity profiles ranging
from randomly connected networks to networks with
Gaussian-distributed local connectivity. We systemati-
cally computed the distance-dependent correlations at
the extracellular (spiking) and intracellular (membrane
potential) levels between randomly assigned pairs of
neurons. The main finding is that such properties, when
they are averaged at a macroscopic scale, are invari-
ant with respect to the different connectivity patterns,
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provided the excitatory-inhibitory balance is the same.
In particular, the same correlation structure holds for
different connectivity profiles. In addition, we exam-
ined the response of such networks to external input,
and found that the correlation landscape can be mod-
ulated by the mean level of synchrony imposed by
the external drive. This modulation was found again
to be independent of the external connectivity profile.
We conclude that first and second-order “mean-field”
statistics of such networks do not depend on the details
of the connectivity at a microscopic scale. This study is
an encouraging step toward a mean-field description of
topological neuronal networks.
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1 Introduction

Spatio-temporal correlations are a key signature of
the cortical population spiking discharge, measured in
the recurrent spontaneous ongoing activity or from
sensory-driven activity. Correlations have been classi-
cally considered as a crucial component of the neu-
ronal assembly code (Singer and Gray 1995; Nirenberg
and Latham 2003) also linked to behavior (Zohary
et al. 1994). Today, a more precise insight about their
spatiotemporal structure, at the supra- and/or sub-
threshold level, is given by analysis techniques using
intracellular recordings and modeling (Destexhe and
Paré 1999; El Boustani et al. 2009), multi electrode
arrays (Smith and Kohn 2008), or 2-photon imaging
(Göbel et al. 2007; Greenberg et al. 2008). Under-
standing how these correlations emerge in recurrent
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neuronal networks and how their structure could be
related to generic network properties can help in as-
sessing their functional role and their relation to or
independence with the local microscopic anatomical
connectivity.

One important issue about neuronal correlations lies
in the way they are modulated by external stimulation.
It is well known that neuronal pairwise correlations can
be affected by the presentation of a stimulus (Kohn
and Smith 2005; Nauhaus et al. 2009; Smith and Kohn
2008; Mitchell et al. 2009), but the way they change
as a function of the stimulus statistics is poorly under-
stood. Identifying the generic properties of the input
that can influence the pairwise cross-correlation profile
within sensory areas could provide an estimation of the
sensory input properties knowing some experimental
functional measurements.

In the superficial layers of the primary visual cortex,
correlations are clustered as a function of the underly-
ing orientation maps constraining the correlated inputs
that are more frequently seen by a particular neuron
(Berger et al. 2007; Nauhaus et al. 2009) but they can
also span a large cortical surface (Smith and Kohn 2008;
Schwarz and Bolz 1991) decaying with distance. In
this context, the distance-dependent profile of pairwise
cross-correlations could be used to gain some knowl-
edge about the underlying anatomical/hard-wired
connectivity.

The balanced random network (van Vreeswijk and
Sompolinsky 1996, 1998; Brunel 2000; Vogels and
Abbott 2005; Kumar et al. 2008; El Boustani and
Destexhe 2009; Amit and Brunel 1997; Renart et al.
2010) is a commonly used and convenient framework
to study the dynamics of large-scale populations of
sparsely-connected integrate-and-fire neurons, and to
reproduce the so-called slow Synchronous Irregular
(SI) regime (Brunel 2000). In this regime, neurons fire
in an irregular manner, behaving almost like Poisson
processes, and the average pairwise cross-correlation
value is modulated by the internal balance and the
external input. This regime is well suited to produce
slow oscillations reminiscent of those observed in vivo
(Han et al. 2008; Arieli et al. 1996). In such models, ana-
lytical techniques can be used to study the distributions
of the pairwise cross-correlations for some topological
profiles and network regimes (Kriener et al. 2009).

However, despite its generality, this classical model
with random connectivity lacks several important bi-
ological features ignored because they complexify the
analytical approach to the problem. In this paper,
we chose to study a more realistic two-dimensional
network of integrate-and-fire neurons, which is more
relevant biologically since it includes propagation de-

lays (Bringuier et al. 1999; Benucci et al. 2007) and
conductance-based synapses (Vogels and Abbott 2005;
Cessac and Viéville 2008; Kumar et al. 2008; Marre
et al. 2009). We provide a detailed numerical study of
its spatio-temporal correlations for Gaussian connec-
tivity profiles, previously introduced in the context of
information processing (Mehring et al. 2003). Such a
model is a minimal model for capturing propagation
phenomena which can be directly observed in vivo with
large scale recordings (voltage-sensitive dye imaging,
multi electrode recording, 2-photon imaging).

In the first part, we study the organization of the
pairwise cross-correlations as a function of distance
in generic 2D networks of integrate-and-fire neurons
subject to unstructured input, a case that will be re-
ferred to as the spontaneous activity case. This irregular
but tonic bombardment is supposed to simulate the
effect of the retinal “dark discharge” in thalamocortical
visual networks, which is detected in the absence of any
visual drive. We characterize correlation profiles as a
function of the distance between pairs of neurons and
their sensitivity when varying key parameters of the
microscopic network structure. In the second part of
the paper, we study the behavior of the same network
when driven with synchronous inputs, to study how the
profile of its pairwise cross-correlations is affected.

2 Materials and methods

Neuron model The simulated networks were com-
posed of N = 12,500 (10,000 excitatory and 2,500 in-
hibitory) conductance-based leaky integrate-and-fire
neurons with a membrane time constant τm = 20 ms,
a leak conductance Gleak = 10 nS, and a resting mem-
brane potential Vrest = −80 mV. When the membrane
potential Vm reaches the spiking threshold Vthresh =
−50 mV, a spike is generated and the membrane poten-
tial is clamped to the reset potential Vreset = −60 mV
during a refractory period of duration τref = 5 ms.
These parameters were kept fixed and were chosen as
biologically plausible and in line with previous studies.
Only the refractory period τref was varied in additional
simulations to be sure that the results found, based on
instantaneous cross-correlations, were not qualitatively
affected by this value. Others simulations were also
performed to check the validity of the result with larger
networks up to 100,000 neurons.

Synapse model The synaptic interactions between
these neurons were modeled as transient conductance
changes. The synaptic time course was modeled as an
instantaneous rise followed by an exponential decay.
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The synaptic time constants were chosen to be τexc =
3 ms and τinh = 7 ms for excitation and inhibition re-
spectively. The reversal potentials were Eexc = 0 mV
and Einh = −70 mV.

The complete set of equations describing the dynam-
ics of a neuron is thus

τm
d V(t)

dt
= (Vrest − V(t)) + gexc(t)(Eexc − V(t))

+ ginh(t)(Einh − V(t))

τsyn
d gsyn(t)

dt
= −gsyn(t) + Ssyn(t)

where syn ∈ {exc, inh}, Ssyn(t) = ∑
i,k δ(t − tk

i ) are the
incoming synaptic spike trains where i ∈ {1, .., N} refers
to presynaptic neurons and k to the different spike
times of these neurons. Here gsyn(t) is expressed in
units of the leak conductance. In this paper, we used
4nS for the excitatory conductance, and a balance of
g = 16 unless stated otherwise. The main parameters
are summarized in Table 1.

Spatial organization A cortical area of L = 1 mm2

was simulated as a 2D-layer-like network with periodic
boundary conditions and an excitatory/inhibitory neu-
ron number ratio of 4:1. Note that since the density
of neurons is arbitrarily selected, and since it varies
between species and cortical areas (Braitenberg and
Schüz 1998), this value of 1 mm2 should not be taken
as realistic. This scale is more in the order of a V1
hypercolumn where local circuits prevail and long-
range horizontal connections are not included, being
beyond the network size. It is therefore distinct from
the larger scale usually used in neural mass models.
Neurons were arranged on a grid, and even though such
a regular structure may slightly bias the connectivity

Table 1 Parameter table
summarizing all the cells and
network parameters used in
the simulations

τm 20 ms
τref 5 ms
τexc 3 ms
τinh 7 ms
Vrest −80 mV
Vthresh −50 mV
Vreset −60 mV
Eexc 0 mV
Einh −70 mV
Gleak 10 nS
�gexc 4 nS
�ginh 16 �gexc = 64 nS
dsyn 0.2 ms
v 0.2 m.s−1

simtime 5,500 s
ε 0.5%, 5%
σc [50, 1,000] μm

(Voges et al. 2007), we checked with additional simula-
tions that the results remained the same if neurons were
drawn uniformly across the layer. Every neuron was
sparsely connected with the rest of the network with
a connection probability that depended on the distance
rij between two neurons in the network according to a
Gaussian profile:

pij = e
− r2

ij

2σ2
c (1)

where σ 2
c is the variance of the connectivity profile,

i.e. the spatial spread of the Gaussian profile. For each
neuron, K = εN incoming connections were drawn by
randomly picking other neurons in the network that
will or not create a projection according to a rejection
method based on the Gaussian profile. ε is defined as
the connection density. The total number K of synapses
per neuron was fixed, so whatever the σc value, each
neuron kept the same number of incoming synapses
for the sake of comparability. Two connection densi-
ties were mainly studied: a highly sparse one (with a
connection density ε = 0.5%) and a denser one (with
ε = 5%).

The neuron density in the network being uniform
and connections being restricted to the maximal value
L/

√
2, the probability of finding one neuron at distance

r equals:

P(r) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2πr
L2

if r ≤ L/2

r(2π − 8 arccos(L/(2r))
L2

if L/2 < r ≤ L/
√

2

0 if L/
√

2 < r

(2)

The number of actually established connections at a
distance r, where the distance-dependent connection
probability is given by the Gaussian profile, is thus:

Nrealized(r) = N P(r) exp(−r2/2σ 2
c ) (3)

with the normalization condition
∫ L/

√
2

0 Nrealized(r)dr =
εN. In the network, the probability of connec-
tion is therefore ρ(r) = P(r) exp(−r2/2σ 2

c ) such that
∫ L/

√
2

0 ρ(r)dr = ε.
The network was considered to be in a spontaneous

state when an unstructured and stationary external
input was fed into it. In the case where the local
network was stimulated, another excitatory layer-like
network projected onto the cortical network in a topo-
logical manner, described by another Gaussian distrib-
ution with variance σ 2

ext. The total number of external
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synapses received by each neuron was the same as K,
the number of recurrent synapses.

Delays We used non-homogeneous delays which de-
pended linearly on the distances rij through

dij = dsyn + rij

v

where the value of v was taken from the literature.
A value of 0.1–0.5 m/s is usually reported (Bringuier
et al. 1999; Gonzlez-Burgos et al. 2000), and in all
simulations, we used v = 0.2 m/s, and dsyn = 0.2 ms.

Simulator All simulations were performed using the
NEST simulator (Diesmann and Gewaltig 2001) and
the PyNN interface (Davison et al. 2009). Correlated
input in the external layer was built by combining
Poisson processes and the processes generated with the
Multiple Interaction Process (MIP) algorithm (Kuhn
et al. 2003).

Data analysis Since the maximal distance between
two neurons in our network is

√
2

2 � 0.7 mm, we divided
the spatial domain into slices of width w = 50 μm.
Spike trains were digitized with a time bin equal to
the refractory period of the neurons, i.e. 5 ms, and
for each slice we selected N = 2,000 pairs of neurons
before averaging the Pearson correlation coefficients
(CC) computed over all these pairs. The spatial profile
of the correlation is therefore given by the following
function f (r) = 〈CC(r)〉 where 〈CC(r)〉 is the average
Pearson coefficient correlation over N = 2,000 pairs
of cells separated by a distance r. Cells that remained

silent during the simulations were discarded from the
analysis, and spiking data were gathered during 5 s
of stationary simulation. For the subthreshold activity,
we selected a row of neurons in the network and we
computed the instantaneous cross-correlation for each
pair as a function of distance. The resulting function
was characterized by computing its integral value over
distance (‘Integrated correlation’) and its linear slope
in a log-log representation (‘Scaling exponent of the
correlation’) (see Fig. 5). Integrated correlation can
therefore be defined as:

〈IC〉 =
∫ L√

2

0
f (r)dr (4)

The integrated correlation is related to the global
synchrony in the network, 〈CC〉, by the relationship

〈CC〉 = ∫ L√
2

0 P(r) f (r)dr, where P(r) is the probability
of finding pairs of cells spaced by a distance r. This
definition is convenient for avoiding the bias produced
by boundary conditions as shown in Fig. 1(a). For the
network activity spike-triggered average, we randomly
sampled 100 neurons for which the average was com-
puted over the whole spike train ensemble.

3 Topological network model

Cortical connectivity is still poorly understood, but is
definitely not as random as was usually modeled in
previous studies. Whether the connectivity graph is
small-world (the definition is ambiguous when con-

(a) (b) (c)

Fig. 1 Profile of the connections. (a) Distribution P(r) of in-
terneuron distances from one excitatory cell to all the other cells
in the network, from Eq. (2). The kink at 0.5 mm is due to the
finite size of the network. (b) Profile of the Gaussian kernels used
to draw the connections, for various σc. (c) Probability of estab-
lished synapses as a function of the distance between neurons in
the network for ε = 0.5%, for several values of the connection

spread, σc. The corresponding mean values are represented as
dotted lines, and the analytical predictions are plotted in dash
dotted black lines. The solid black line shows the control case of a
purely random network. The inset in panel C shows the Gaussian
profiles of the connectivity when normalization condition is taken
into account
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sidering propagation delays), clustered, or Gaussian is
still unclear, but biological evidence shows that neu-
rons in the cortex project mainly to their surroundings
(Hellwig 2000; Bienenstock 1996). As a first approx-
imation, neurons can be considered as being con-
nected with a distance-dependent probability follow-
ing a Gaussian profile. Even though it is known that
real connectivity is less isotropic and homogeneous
(for example the orientation maps and the patchy
horizontal connectivity in V1 (Gilbert and Wiesel
1983)), the Gaussian profile is a good description of
a small cortical area where long-range interactions
are ignored. Therefore, every neuron in our model
is connected with the rest of the network with a 2D
Gaussian probability function and a fixed number of
incoming synapses, while periodic boundary conditions
are used throughout the study to avoid any bound-
ary effects. In order to obtain in vivo-like states, we
adopted the usual integrate-and-fire balanced network
configuration comprising a 4:1 ratio between excitatory
and inhibitory neurons (Brunel 2000). The synaptic
weights were chosen in order to obtain balanced sub-
threshold fluctuating dynamics responsible for the ir-
regular firing.

Propagation delays are known to lead to a large
diversity of states in large-scale neuronal networks
(Roxin et al. 2005; Izhikevich et al. 2004). While they
are often discarded in large-scale models, under the as-
sumption that they can be neglected in a small cortical
area, biological studies (Bringuier et al. 1999; Gonzlez-
Burgos et al. 2000) have reported typical values of 0.1–
0.5 m/s for conduction delays, and comparable values
can be observed in voltage sensitive dye imaging, where
activity waves propagate at a similar speed (Grinvald
et al. 1994; Benucci et al. 2007; Nauhaus et al. 2009).
Patch recordings in vitro confirm that these delays scale
linearly as a function of distance (Larkum et al. 2001)
when considering the propagation from dendrites to the
soma. Thus, even for a small patch of cortex of 1 mm2,
with a synaptic delay of 0.2 ms (due to neurotransmitter
release), conduction delays are broadly distributed and
should not be neglected. Moreover artificial oscillations
can arise in networks where delays are homogeneous
(Brunel 2000). Our network was therefore built as an
artificial square lattice of 1 mm2 and we chose a propa-
gation speed of v = 0.2 m/s.

Figure 1(c) shows the distribution of the distances
in the network as a function of the Gaussian spread
σc. The case of an equivalent uniform distribution is
added for comparison (σc = ∞). By construction, the
distributions of ρ(r) are continuously affected by σc,
and are not Gaussian. Indeed, these functions are the
product of the Gaussian profiles of connectivity (see

Fig. 1(b)) and the probability P(r) of finding a pair of
neuron for a given distance under the normalization

condition
∫ L/

√
2

0 P(r) exp(−r2/2σ 2
c )dr = ε (see Fig. 1(c)

for the case ε = 0.5%). The inset in Fig. 1(c) shows the
effective probability of connections between neurons
under this normalization condition. The case ε = 5%
can be obtained by scaling the curves in Fig. 1(c) by a
factor 10.

During the so-called spontaneous activity, every neu-
ron in the network is stimulated with decorrelated
Poisson input. Even if in terms of numbers of synapses
the synaptic drive of cortical neurons in V1 originates
mainly from the recurrent network, the efficacy of the
feedforward thalamocortical synapses is the largest (Gil
et al. 1999). To simulate the functional balance between
recurrent and feedforward input, each neuron in the
cortical layer received the same number of external
synapses as recurrent ones. When we considered cor-
related input, an external layer was added on top of the
network where external units produced synchronous
Poisson spike trains projecting on a subset of the 2D
network with Gaussian probability distributions. There
were no delays from the stimulation layer to the recur-
rent network layer.

4 Response under unstructured noise

In the spontaneous activity regime, i.e. when uncor-
related Poisson external noise was applied to all the
synapses at a mean frequency of νext = 5 spikes/s, the
network displayed waves emerging in random places
which tended to propagate all over the surface. It
should be noted that such networks are not able to
maintain self-sustained activity by themselves. Several
studies previously reported that these ongoing and
reverberating regimes could be observed in networks
with conductance-based synapses (Vogels and Abbott
2005; Kumar et al. 2008; El Boustani and Destexhe
2009; Marre et al. 2009), but they were all achieved
in networks without any propagation delays. We em-
pirically noticed that the linear propagation time taken
into account here (see Section 2) increases the average
synaptic delay and therefore the neuron density that
would have been necessary to observe such a sponta-
neous regime. The average delay within the present
network is close to 0.75 ms for σc = 100 μm, and de-
pends on σc (see Fig. 1(c), since the delay is linearly
related to distance). Nevertheless, it has been shown
that a weak uncorrelated external input does not alter
the main statistical features of these models (Brunel
2000; Vogels and Abbott 2005) and their irregular activ-
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ity could not be completely explained by the stochastic
nature of this background activity, such that we can still
study the interplay between spontaneous and evoked
correlated activity.

As can be seen in Fig. 2, large sub-threshold waves
developed at the conductance level. Waves of excita-
tion, popping up at random places, were immediately
followed by an increase of inhibition, traveling simul-
taneously across the network due to the connection
rule and the delays. These waves are reflected in the
supra- and sub-threshold activity usually experimen-
tally recorded (Han et al. 2008; Nauhaus et al. 2009).

To gain some insights into the role of the network
structure, we varied in a systematic manner two main
parameters : the spatial extent of the Gaussian profile
used for the recurrent connections σc and the balance
between excitatory and inhibitory synaptic strength
g. The results are shown in Fig. 3, for two different
connectivity densities, ε ∈ {0.5%, 5%}. The first strik-
ing observation is that for both connection densities,
averaged quantities such as the mean firing rate and
the mean coefficient of variation of the inter-spike
interval (CV ISI) do not depend on the connectivity
spread σc but are controlled only by the balance g
between excitation and inhibition (see Fig. 3(a, b, e,
f)). A similar result has been previously observed in
El Boustani and Destexhe (2009). At the population
level, the only relevant parameters for these macro-

scopic quantities are therefore the average number of
synapses received per neuron and their strength, not
the precise layout of the recurrent connectivity. There
is somehow a match between the level at which simple
anatomical details should be taken into account and the
scale of measurement. Of course, this is true as long
as the connections are sparse enough: in the limit case
of very small σc, we are almost in a nearest-neighbors
situation and the local correlations are too strong to
keep averaged quantities invariant. This is an extreme
situation where usual mean-field models are not valid
anymore.

The second result concerns the irregular and oscil-
latory nature of the dynamics. Typical raster plots of
the observed activity regime (Fig. 3(d, h), g = 16 and
σc = 100 μm) show low-rate irregular firing, with an
oscillatory activity made of spontaneous waves (see
also Fig. 2). Within these waves, neurons fire irregularly
with a mean CV ISI close to one, while the frequency of
these oscillations is only slightly affected by σc (Fig. 3(c,
g)). Nevertheless, one can observe that by increasing
the connectivity density, the influence of σc on the
frequency tends to increase. So, for highly connected
network, one would expect a more significant impact of
the connectivity on the network oscillations.

The network state depends on the balance g between
excitation and inhibition, and on the frequency of the
external noise νext. Several regimes can be observed,

17
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49

17

0 ms 10 ms 20 ms 30 ms

-58

-61

-64

1 [mm]

Fig. 2 Snapshots of the spontaneous ongoing activity in the 2D
network. Neuronal responses at the supra-threshold (spikes) and
sub-threshold (Vm) levels for every neuron in the 2D network
are shown in the top and second rows, respectively. Snapshots

are taken every 2 ms for a total duration of 28 ms. The last two
rows show instantaneous input conductance maps. Excitatory
conductances are represented in the third row and the inhibitory
conductances in the last row
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3 Phase diagrams of the network statistics as a function
of the local connectivity extent σc and the excitatory–inhibitory
synaptic strength ratio g. (a)–(c) Phase diagram of the network
with a connection density ε = 0.5%. (a) Mean firing rate, (b)
mean CV ISI over the whole network, as a function of σc and
g. (c) Mean frequency of the spontaneous oscillation generated

in the population dynamics, as can be seen in the raster plot
(all excitatory neurons, i.e 10,000 cells, (d)) of the activity for
a particular regime (g = 16 and σc = 100 μm, white cross), and
average firing rate with a 5 ms time bin. Bottom: (e)–(h) Same as
in (a)–(d), but with a connection density ε = 5%

among those reported in Brunel (2000) and Mehring
et al. (2003) for current-based synapses. We mainly fo-
cus on the states displayed in the raster plots of Fig. 3(d,
h) where the network is in a slow Synchronous Irregular
regime (SI) because we were interested in low firing
rates and irregular activity. In such slow SI regimes, the
network can display distinct waves of activity based on
the underlying topology and delays. The spontaneous
activity in sensory areas such as V1 is certainly irreg-
ular, and it is also known, with voltage sensitive dye
imaging studies (Han et al. 2008; Contreras 2007; Arieli
et al. 1996), that traveling waves appear and propagate.
The slow SI regime seemed in that respect to be a good
compromise to keep the irregularity and to promote
the emergence of waves that mimic what is observed
in vivo. To have a better insight, Fig. 4 shows distinct
spatio-temporal profiles of the correlations in the case
ε ∈ {0.5%, 5%} for two “extreme” connection spreads
(top: σc = 50 μm, bottom: σc = 500 μm). One can
clearly see the oscillations in the temporal domain due
to the slow SI regime. Nevertheless, additional simula-
tions shows that even in more asynchronous regimes,
where correlations are less influenced by the structure
and propagation waves are disrupted, our conclusions
are still valid (see Supplementary Fig. 1). The same
applies if we just increase the number of neurons, up to

100,000, without changing the connectivity: the density
does not affect the result (see Supplementary Fig. 2).

To quantify the distance-dependent correlation
profile in the network at the spiking level, we used
two measures to distinguish the global amount of syn-
chrony and the decrease as a function of distance.
Figure 5(a) shows a typical profile of the pairwise cross-
correlation as a function of distance. For each distance,
we selected 2,000 pairs of neurons and averaged the
Pearson correlation coefficient computed over all these
pairs (see Section 2). These coefficients were computed
between the corresponding spike trains and digitized
with a time bin equal to the refractory period of the
neurons, 5 ms. Supplementary Fig. 3 shows that for
a larger time bin, the main results are qualitatively
similar. The integrated correlation is defined as the
integral over distances, and it reflects the global amount
of synchrony present in the network. Figure 5(b) shows
that on a log-log scale the decay of these pairwise
correlations as a function of distance is approximately
linear. The slope of this linear region will be referred
to as the “correlation scaling exponent” obtained by a
least square fit. A similar analysis can be performed at
the membrane potential level: correlation coefficients
at zero time-lag are used to assess the correlation be-
tween two membrane potentials, and the two measures
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Fig. 4 Spatio-temporal
profile of the spiking
correlations in the network
(g = 16) for two values of ε

(upper line ε = 0.5%, lower
line ε = 5%) and σc: 50 μm
(left) (upper panels a, b), and
500 μm (lower panels c, d).
White dots indicate the peak
values of the instantaneous
cross-correlations for nearby
neurons

0.035

0.147 0.054

0.018

(a) (b)

(c) (d)

described in Section 2 and shown in Fig. 5 can also be
applied.

The exhaustive analysis of these correlation profiles
in the phase space previously explored in Fig. 3 is

summarized in Fig. 6, for a connection density of ε =
0.5%. Qualitatively similar results can be obtained
for the higher connection density (see Supplementary
Fig. 4). The correlations have been analyzed both at

(a) (b)

Fig. 5 Quantification of the distance-dependent correlation
profile within the topological network. (a) Typical profile of
spiking pairwise cross-correlation as a function of distance. The

integrated correlation is the integral over all distances. (b) The
correlation slope is fitted by a line on a log-log scale
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(a) (b) (c)

(d) (e) (f)

Fig. 6 Comparison of the distance-dependent correlations at
the spiking and subthreshold (Vm) levels, for ε = 0.5%. (a), (b)
Cross-correlation scaling exponent, analyzed either at the spiking
level (a) or at the Vm level (b). (c) Cross-correlation scaling
exponents at the Vm level (observed in panel (b)) plotted against
values at the spiking level (observed in panel (a)). Same color-

code as in Fig. 3, illustrating the firing rate of these particular
points. (d), (e) Integrated correlations of the distance-dependent
correlation profile, analyzed either at the spiking level (d) or at
the Vm level (e). (f) Integrated correlations obtained at the Vm
level (observed in panel (d)) plotted against the values obtained
at the spiking level (observed in panel (e)). Same color-code

the spiking level and at the Vm level. In Fig. 6, panels
a and d show the integrated correlation and correlation
scaling exponent for correlations measured on spike
trains, and panels b and e show these measures on
membrane potentials. In both cases, one observes that
the correlation scaling exponent does not depend on
the connectivity parameters (see Fig. 6(a, b)). Except
in the Synchronous Regular (SR) regime where large
oscillations corrupt these measures, the scaling expo-
nent is almost independent of σc and of the balance
g and tends to zero on average. Figure 6(c) shows
the values of the cross-correlation scaling exponent as
measured on spike trains against values measured on
the basis of Vm. Since both values are invariants, a
uniform cloud of points is found without any particular
statistical bias. In Fig. 6(d, e), one can see the integrated
correlations, again measured on spike trains and on
Vm. In both cases, the balance g dictates the amount
of synchrony which is present in the network, in line
with our previous results on averaged quantities. The
more g is increased, the more dominant is the inhibition
and the less synchronous is the network activity. By
plotting the integrated cross-correlations measured at
the spiking level against those recorded at the Vm level
(Fig. 6(f)), we can see that for low rate regimes, the

relation between the integrated spiking correlation and
the sub-threshold correlation is almost linear and then
increases in a nonlinear and monotonic manner for
higher firing rates. The clusters are isolated according
to the network firing rate shown in color code identical
to the one used in Fig. 3. Therefore, in these network
configurations, the integrated correlation measured at
the subthreshold level is uniquely determined by the
spiking correlation.

To study the influence of heterogeneity in the con-
nection scheme, the ratio between the spread of the
Gaussian profile used to connect the excitatory and
the inhibitory neurons within the network was varied.
Figure 7(a) illustrates how these two parameters σexc

and σinh were changed. Instead of exploring the whole
parameter space, only two lines were explored: one
with σexc fixed to 200 μm while σinh was varied in the
range 0–1 mm, and another where σexc was varied for
a fixed σinh (respectively red and blue curves in Fig. 7).
As can be seen in the Fig. 7(b–f), averaged quantities
such as mean firing rate, population peak oscillatory
frequency, or mean ISI CV are hardly affected by these
parameters, provided σexc or σinh are not too small. If
they are, one can observe a symmetry breaking pushing
the network into pathological states (Fig. 7(d–h)) with
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7 Changing the spatial spread σc of the excitatory and
inhibitory connections independently. (a) Schematic illustration
explaining the parameter region explored. In red, σinh is held
constant while σexc is varied, while in blue, the opposite. In all
subsequent panels (b, c, e–g), the intersection point is repre-
sented by the dashed gray line. (b) Mean firing rate, (c) cross-

correlation scaling exponent, (f) population activity peak fre-
quency, (e) mean ISI CV and (g) integrated correlations as a
function of σexc or σinh. (d), (h) Time-averaged activity maps of
the two pathological cases that emerged for low σexc (d) or σinh
(h) values

very localized bumps of activity spontaneously jumping
from one state to another. This scenario is reminis-
cent of the “hotspots”-like patterns obtained by Usher
et al. (1994) with a Mexican-hat connectivity profile
and hybrid neurons violating Dale’s principle (i.e both
exciting and inhibiting their target cells (Kriener et al.
2008)). Our finding of Turing-type patterns resulting
from differences in connectivity together with the non-
linearity of the system is thus compatible with their
model when the network connectivity is local enough
to generate strong topological correlations. Otherwise,
one can again notice that the cross-correlation scaling
exponent is rather insensitive to the connectivity spatial
spread and close to zero (Fig. 7(c)), while the integrated
cross-correlation is affected by the spread (Fig. 7(g)).
Increasing the spread of inhibitory projections while
keeping that of excitatory neurons constant increases
the overall amount of synchrony within the network,
by diluting the inhibition. On the other hand, increasing
the spread of the excitation by keeping fixed that of in-
hibition decreases the amount of synchrony by diluting
excitation.

Finally, we explored the role of propagation delays
and their influence on the spatial spread of distance-
dependent cross-correlations within the network. In
particular, we studied the impact of propagation speed
for different network structure parameters: the con-

nection spatial spread and the connection density. For
highly localized connectivity (σc = 50 μm, Fig. 8(a, c))
changing the speed has no significant effect on the
correlation profile, for both low and high connectiv-
ity densities. Indeed, when only nearby neurons are
connected, the effective delays for various velocities
are still small enough to leave the profiles unaffected.
Similarly, when a larger Gaussian profile is used in a
network with high connectivity density (ε = 5%, σc =
200 μm, see Fig. 8(d)), we found that changing the
velocity induces a higher variability in the correlation
profiles, without any consistent variation. However,
when considering large connectivity spread in very di-
luted networks, where the propagation delays become
crucial (ε = 0.5%, σc = 200 μm, see Fig. 8(c)), the in-
tegrated correlation increases with velocity. It has to
be stressed that the case σc = 50 μm in Fig. 8(a, c) is a
limit case, because the network is close to a pathological
state where the neurons are almost densely connected
in an all-to-all nearest-neighbor connection scheme
(see inset of Fig. 1(c)). These very localized connections
establish differences with broader σc. The fact that the
bottom rows of Fig. 6(a, b, d, e) (for σc < 100 μm) are
different is consistent with the observation that in Fig. 8
there is a clear difference, for fixed ε, in the correlations
for the two values of σc used. In fact, one has to keep
in mind that the shapes of the curves in Fig 8(a, c) are
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(a) (b)

(c) (d)

Fig. 8 Influence of delays on the cross-correlation profiles. The
average pairwise Pearson correlation coefficient is plotted in a
network with a connectivity density ε = 0.5%, as a function of the
distance within neuronal pairs, for four distinct velocity values.

Error bars show the standard error of the mean. Two Gaussian
profiles are considered. (a) A very local one (σc = 50μm). (b) A
broader one (σc = 200μm). (c), (d) Same as (a) and (b), but in a
denser network with ε = 5%

valid only for very local networks (σc = 50 μm), and
that in all the other configurations (σc > 100 μm), the
curves would look like those in Fig 8(b, d)). Altogether,
we conclude that propagation delays have a significant
effect on the spatial correlation profile only when long-
range interactions are as important as local interactions.
The linear relationship between delays and distances
used in the model can be considered as too strong.
Indeed, for a very dense and intricate circuit, such
as the one studied in Oswald and Reyes (2008), this
relationship is not that obvious. If there is evidence that
conduction times within dendrites and/or axons are lin-
ear, this linearity due to the wiring scheme may be more
noisy than in our model. Nevertheless, we checked that
the invariance and the results are still valid when delays

and distances are linearly correlated, but are not related
by a unique functional relationship anymore, such as
dij = dsyn + rij

v
(1 + N (0, σ )), where N (0, σ ) is Gaussian

noise of variance σ = 0.25 (see Supplementary Fig. 5).

5 Effect of structured stimulation

Having studied the response of the network under
unstructured stimulation (Poissonian input, mimick-
ing the spontaneous ongoing activity coming from the
thalamus), we were interested in adding an additional
layer to inject spatial correlations (representing the
sensory drive) in the network. More precisely, we sim-
ulated a layer of Poisson sources arranged also in a 2D
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(a) (b)

Fig. 9 Schematic view of the input layer used to inject spatial
correlations. (a) An additional 2D layer of sources is added,
where each excitatory source connects to the recurrent network
with a Gaussian profile of standard deviation σext in a divergent
manner (taken from El Boustani et al. 2009). (b) Illustration

of the compound process made with Multiple Interaction and
Poisson processes, shown as raster plots of the activity for 2,500
cells in the external layer, for several values of c. The parameter
c controls the percentage of co-active neurons into synchronous
volleys

(a) (b) (c)

(d) (e) (f)

Fig. 10 Evoked activity under spatially correlated stimulation for
ε = 0.5%. (a) Three raster plots for 2,500 neurons and different
synchrony levels in the input. (b) Mean firing rate, (c) cross-
correlation scaling exponent, (e) mean CV ISI and (f) integrated

correlation in the recurrent network as a function of the input
divergence σext, for the four levels of synchrony. (d) Power
spectra density for a fixed σext = 200 μm and the four levels of
synchrony
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plane (Fig. 9(a)), connected to the recurrent network
with a divergent Gaussian spread with a variance σ 2

ext,
and acting as compound processes made with Poisson
sources and Multiple Interaction Processes (Kuhn et al.
2003) (MIP). To be more precise, c is the percentage of
neurons that will emit simultaneous spikes during some
volleys, appearing at a frequency cνext. The MIP is a
process of thinning a Poisson “mother” spike train at
a frequency νext to obtain a set of daughter trains by
duplication of the spikes with a probability c, so that
the daughters have rates cνext and pairwise correlation
c. By using the compound of the MIP and independent
Poissonian sources at a frequency (1 − c)νext, each ex-
ternal cell acts therefore as an excitatory source, shar-
ing global inputs imposed by the MIP at a frequency
cνext. The combination of these two processes allowed
us to control, with a continuous parameter c ∈ [0, 1]
(Fig. 9(b)), the amount of synchrony sent to the net-
work while keeping the mean input firing rate νext

constant.
Figure 10 shows the response of the network for four

external input synchrony levels c ∈ {0, 0.05, 0.1, 0.2},
and for different spreads of the external input diver-
gence σext. In Fig. 10(a), four typical raster plots are
represented for these four levels of synchrony with
an identical external input rate fixed at 5 spikes/s (as
in the unstructured case). The more c is increased,
the more efficiently the synchrony will trigger strong
responses in the recurrent network, while, at the same
time, decreasing the general firing rate by forcing every

neuron in their refractory period (Fig. 10(b)). For av-
eraged quantities such as the mean firing rate and CV
ISI (Fig. 10(b, e)), the external divergence σext of the
feedforward projection does not have any influence,
a phenomenon already observed in the presence of
unstructured inputs. Increasing the external synchrony
will broaden the spectral responses and decrease the
frequency content of the oscillatory activity in the pop-
ulation dynamics because of the stochastic nature of
the input (Fig. 10(d)). Regarding the correlation profile
as a function of distance, increasing the synchrony c
induces an increase in the integrated correlation of the
recurrent network (Fig. 10(f)), but more importantly,
we observed that the external correlation is now able to
change the correlation scaling exponent of the distance-
dependent correlation profile, especially when the ex-
ternal connectivity spread is narrow (Fig. 10(c)).

These changes are summarized in Fig. 11, where
we chose σext = 50 μm for the sake of clarity. In Fig.
11(a), one can observe the increase in the integrated
correlations following an increase of the external syn-
chrony. The more the network receives strong syn-
chronous spiking volleys, the stronger are the pairwise
correlation coefficients. As one can see in Fig. 11(b),
increasing the external synchrony also affects the cross-
correlation scaling exponent of the distance-dependent
correlation profile. Adding synchrony favors synchro-
nous volleys that are strong enough to trigger spiking
activity in the recurrent network at any position simul-
taneously. This global activation pattern in turn creates

(a) (b)

Fig. 11 Change in the distance-dependent correlation profile as
a function of the level of synchrony in the input for ε = 0.5%.
(a) Correlation scaling exponent in the recurrent network as a

function of the external synchrony. (b) Integrated correlation in
the stimulated layer as a function of the external synchrony
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Fig. 12 Network activity spike-triggered average (NASTA) as
a function of external synchrony for ε = 0.5%. (a) NASTA for
one neuron. The maps show the spatial network activity averaged

over all its spikes, 2 ms before, for several level of external
synchrony. (b) Same as in (a), but the activity is now plotted only
for the central spatial line of the map and as a function of time

long-range correlations in the network. Conversely, for
narrow stimulation spatial spread without any addi-
tional spatial correlations (no synchrony), small assem-
blies of neurons become strongly correlated in a spatial
range shorter than that observed in the spontaneous
activity.

The genesis of these processes can be better under-
stood by studying the presynaptic patterns leading to
spikes, called network activity spike-triggered average
(NASTA). This is shown in Fig. 12(a), where the recur-
rent inputs are mainly responsible for the emission of
a spike for low levels of external synchrony. The fact
that a localized PSTH is obtained for c < 10% means
that the network activity of the surrounding neurons
2 ms earlier will be driving the post-synaptic neuron to
spike. The more c is increased, the less important is the
recurrent connectivity contribution and the stronger
are the external spiking volleys to trigger by them-
selves a spike. In the NASTA spatio-temporal domain
(Fig. 12(b)), one can see that the broad temporal spread
around the postsynaptic neuron accounts for the prop-
agation delay with the presynaptic neurons in the net-
work. Here again, the external spike volleys have a role
in flattening the spatial correlation and sharpening the

temporal spread of cross-correlation when increasing
the external synchrony.

6 Discussion

Invariant macroscopic statistics In this paper, we have
studied balanced network models with conductance-
based synaptic interactions and different spatial
profiles of connectivity. Our main finding is that
such balanced networks possess connectivity-invariant
quantities as long as each neuron is sparsely connected
to its neighbors. Surprisingly, this result holds even
for very narrow Gaussian connectivity. This is a very
encouraging result which shows that mean-field ap-
proaches, where no topology is taken into account, can
offer a reliable description of the network at macro-
scopic scales as long as the dynamical regime of con-
ductances remains stationary and homogenous across
the network.

For instance, when modeling data such as voltage-
sensitive dyes imaging (VSDI) recordings, there is a
priori no need to know the fine details of the connec-
tivity within each pixel. In particular, we know that for
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the spontaneous activity regime, the mean firing rate,
the mean CV ISI and the overall synchrony depend
mainly on the synaptic E/I balance ratio (except for the
first-neighbor extreme case). We also observed that the
spatial correlation decay in this regime depends neither
on the connectivity extent nor on the conductance
balance in the irregular regime. However, we do see
a dependency of the correlation decay on the connec-
tivity density (which is anyway a structural averaged
quantity).

Similar conclusions apply to the case of networks
subject to structured input (representing external cor-
relation patterns imposed by the sensory drive). We
showed that the fine details of the connectivity are less
influential than averaged quantities such as the overall
synchrony. It should therefore be possible to find a
simple relation describing the spatial correlation decay
only in terms of macroscopic quantities such as the
mean synaptic input per neuron or the mean synchrony
in the external drive.

We observed numerically that most of the first- and
second-order statistics in these networks are ruled by
averaged macroscopic structural quantities. Therefore,
it seems that for these models, structural (synaptic
weights, mean synaptic input) and dynamical (mean
firing rate, correlations) statistics are related to each
other in a hierarchical manner, as already observed in a
simpler setting (Liu and Nykamp 2009). We therefore
do not conclude that connectivity is completely “de-
coupled” from correlation, but rather that this detail
of description is irrelevant at a large-scale level of
observation. The underlying mechanistic explanation
is directly linked to the way these balanced activities
are generated in sparse networks, and we show how
these dynamics break in the extreme case of dense local
connectivity.

Supra- and sub-threshold correlations Several studies
have focused recently on the second-order transfer
function of spiking neurons. More precisely, knowing
the correlation structure in the presynaptic activity of
one or two neurons sharing a common input, one can
ask what is the spiking auto-correlation of each neu-
ron and/or their cross-correlation. It has been shown
recently that for the low-correlation regime, the supra-
and sub-threshold activities are linearly related with
a proportionality factor which mainly depends on the
firing rate of these neurons (de la Rocha et al. 2007;
Shea-Brown et al. 2008). In our situation, conclusions
are harder to reach from an analytical point of view,
because we are considering populations of neurons.
However, we found a monotonic relation between the
supra- and sub-threshold signal correlation proving that

both levels offer a similar description of the correlation
state in the network. For spontaneous activity (un-
correlated inputs), these correlations are generated by
the recurrent connections within the network, so that
this monotonic relation must satisfy a self-consistent
relation in order to be stable. Describing this relation
through closed analytical equations for simpler models
would bring us a step further in the understanding of
recurrent network dynamics.

Comparison with other studies Previous studies have
aimed to describe the relationship between network
structure and dynamics. For example in Usher et al.
(1994), the authors studied networks displaying irreg-
ular spiking activity and long-range temporal corre-
lations. They reported that in a small network with
“hybrid” neurons violating Dale’s principle (Kriener
et al. 2008), and connected in a Mexican hat manner
(local excitation and long-range inhibition), they were
able to generate network dynamics with a high degree
of variability. However, their network regime was not
balanced, and the irregular activity in the network was
generated by “hotspot”-type activity patterns (similar
to those described in Fig. 7(d–h)), instead of waves.
In Kitano and Fukai (2007), the authors report that
in small and highly clustered small-world networks,
the spiking irregularity is strongly dependent on the
synaptic weight balance and the small-world rewiring
parameter. However, this approach is far from the
sparse connectivity we are considering here, and it does
not match the mean-field requirements for a suitable
prediction of macroscopic dynamical quantities. Nev-
ertheless, in their computation of distance-dependent
correlation and beyond the local region, there is a large
region where the correlation scaling exponent does not
depend as strongly on the connectivity scheme (see
Fig. 5 of Kitano and Fukai 2007).

Shaping the correlation landscape with correlated input
When the network was fed with uncorrelated input, it
was not possible to change the distance-dependent cor-
relation scaling exponent by changing the connectivity
extent or the synaptic weight ratio. However, changing
the connectivity density or the correlations in the input
either broadens or shortens the distance-dependent
correlations. This could be also easily seen through
the network activity spike-triggered average where the
correlation landscape becomes uniform in space and
narrow in time by increasing synchrony. Taken together
with the fact that spiking and sub-threshold correlations
have a monotonic relationship, this could be a way to
estimate the impact of sensory input on ongoing activity
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using measurements such as VSD imaging, single-cell
unit activity, or local field potentials.
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